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 Abstract: - The developing complexity of deep learning architectures results in weeks or maybe 

months of schooling time. This sluggish education is due to "vanishing gradients," in which the 

gradients once again used by propagation are rather massive for weights connecting deep layers 

(layers near the output layer) and quite small for shallow layers (near the input layer); this results 

in slow learning within the shallow layers. In addition, it has been confirmed that low curvature 

saddle factors may proliferate during particularly non-convex disorders, including deep neural 

networks, which dramatically slows down learning [1]. On this paper, through the presentation of 

an optimization method for education of deep neural networks, we strive to overcome the two above 

problems by using study prices that may be specific to each layer in the network and adaptive to the 

curvature of the feature, developing the knowledge of load at low curvature elements. This allows 

us to hurry up to learn in the network's shallow layers and short break out excessive-errors of low 

curvature saddle components. We look at our approach to large image magnificence datasets that 

include MNIST, CIFAR10 and Image Net, and show that our method will further boost accuracy 

to reduce the required time for schooling over giant algorithms. 
 

I. INTRODUCTION  

Over the past few years, deep neural networks have been exceptionally effective, achieving state-of-the-art 

results on a wide variety of tasks, such as picture classification [2], face recognition [3], feeling analysis [4], 

voice recognition [5], etc. In these articles, one can note a general trend: outcomes appear to get stronger as the 

volume of training data grows, coupled with a rise in the sophistication of the design of the deep network. Even 

with high-performance hardware, increasingly complicated deep networks can take weeks or months to train, 

however. Therefore, for training deep networks, there is a need for more powerful approaches. By performing a 

sequence of non-linear transformations, deep neural networks learn high-level features. Let the training data set 

A consist of n data points a1, a2, an x Mr and corresponding labels B = {bi} n i=1. Let us assume the activation 

role of a 3-layer network with f. Let X1 and X2 denote the weights that we are attempting to learn on - line, i.e., 

X1 denotes the weights between the first and second layer nodes, and X2 denotes the weights between the 

second layer and third layer nodes. The learning problem can be formulated as the following optimization 

problem for this particular example: 

 
Any non-linear mapping may be the activation function f, which historically is a sigmoid or tan function. 

Recently, rectified linear (Relook) units (f (z) =max {0, z}) have become common since, for certain issues, they 

appear to be simple to train and deliver superior results [6]. Using iterative approaches (such as back-

propagation) in the hope of converging to a good local minimum, the non-convex objective (1) is usually 

reduced. Most iterative schemes produce additive changes to the parameter set x (weight matrices, in our case) 

of the shape. 

 
Where Δx (k) is a suitably selected modification. Note that from traditional optimization literature, we use 

somewhat different notation here in that we integrate the phase size or learning rate t (k) into x (k). This is done 

to assist us in the subsequent parts to conveniently explain other optimization algorithms. Therefore, in the 

parameters, Δx (k) denotes the update and consists of a quest path and a phase size or learning rate t (k), which 

controls how wide a step in that direction is to be taken. The most popular updating rules are gradient descent 

versions, where the negative gradient g (k): gives the search direction: 



ISSN NO: 9726-001X  

Volume 08 Issue 01 March 2020 

 

 
As the scale of training data for these deep networks is typically on the range of millions or billions of data 

points, it is not possible to reliably measure the gradient. Instead, utilizing a single data point or a limited batch 

of data points, the gradient is always calculated. This is the foundation for stochastic gradient descent (SGD) 

[7], the most frequently used form in deep net preparation. SGD has to pick an initial learning rate manually and 

then create an update law for the learning rate that lowers it over time (for example, exponential decay with 

time). However, SGD's output is very responsive to this upgrade option, resulting in adaptive methods that 

change the learning rate automatically as the machine learns [8], [9]. Additional issues are added as these 

descent approaches are used for training deep networks. The gradients that are propagated back to the original 

layers become very minimal as the amount of layers in a network grows. This slows down the pace of learning 

in the initial layers significantly and slows down the integration of the whole network [10]. 

Recently, it has also been seen that the presence of local minima of high error compared to the global minimum 

is exponentially small in the number of dimensions for high-dimensional non-convex topics, such as deep 

networks. Instead, there is an exponentially significant amount of low-curvature high-error saddle points [1], 

[11], [12] in these issues. Gradient descent approaches, by observing the paths of negative curvature, usually 

travel away from saddle points. However, the moves taken become very limited due to the low curvature of 

small negative eigenvalues, thereby slowing down learning considerably. We suggest a process in this paper that 

alleviates the above-mentioned concerns. Below is the key contribution of our process, summarized 

 In the network, the learning rates are unique to each substrate. In shallow layers, this requires higher 

learning speeds to compensate for the limited scale of gradients. 

 At low curvature points, the learning rates for each layer begin to rise. This helps the method to escape 

easily from high-error, low-curvature saddle points, which exist in deep network abundance. 

 It is applicable to most current methods of stochastic gradient optimization that use a worldwide learning 

scale. 

 It needs relatively little additional computation over traditional methods of stochastic gradient and does not 

involve any additional storage of previous gradients, as in AdaGrad [9]. 

 We discuss some common gradient approaches in Section II, which have been effective for deep networks. 

We define our optimization algorithm in Section III. Finally, we equate our solution to traditional 

optimization algorithms on datasets such as MNIST, CIFAR10 and Image Net in Section IV. 

 

II. RELATED WORK  

 

Stochastic Gradient Descent (SGD) remains one of the most frequently employed large-scale machine learning 

approaches, mainly because of its simplicity of execution. In SGD, the parameter updates are described by 

equations (2) and (3), and as iterates reach a local optimum, the learning rate is diminished over time. A 

standard update of the learning rate is given b 

 
If hyper parameters selected by the consumer are the initial learning rate t (0), γ and p. Many improvements 

have been proposed to the simple gradient descent algorithm. Newton's strategy, which uses the Hessian of the 

objective function f(x) to calculate the phase scale, is a popular approach in the convex optimization literature: 

 
Unfortunately, computing the Hessian becomes very computationally costly as the sum of parameters grows, 

even to moderate scale. Therefore, several changes have been suggested that either aim to optimize the usage of 

first-order knowledge or seek to estimate the objective function of the Hessian. We concentrate on modifications 

to first-order approaches in this article. For parameters for which the gradient continuously points in the same 

direction, the classical momentum method [13] is a strategy that raises the learning rate, thus reducing the 

learning rate for parameters for which the gradient varies rapidly. The update equation then retains track of 

previous parameter changes for an exponential decay: 

 
 

Where μ ⁇ [0, 1] is alluded to as the momentum coefficient and the global learning rate is t > 0. In some cases, 

Nesterov's Accelerated Gradient (NAG) [14], a first order process, has a better convergence rate than gradient 

descent. This approach forecasts the gradient for the next iteration and, depending on the expected gradient, 

adjusts the learning rate for the current iteration. Thus, if the gradient is higher for the next stage, the learning 

rate for the current iteration will be improved and it will slow down if it is smaller. Recently, [15] shows that 

with the change equation, this approach can be thought of as a momentum method as follows: 

 



ISSN NO: 9726-001X  

Volume 08 Issue 01 March 2020 

 

 
This approach will achieve high levels of efficiency when used on deep networks [15] by a carefully constructed 

random initialization and using a special kind of slowly rising schedule for μ. Recent analysis has demonstrated 

that using a learning rate unique to each parameter may be a far more efficient method, instead of using a 

standard learning rate for all parameters. A tool which has become common is AdaGrad [9], which uses the 

following upgrade rule: 

 

 
The denominator of all the gradients of the previous iterations is the l2 norm. To give a parameter-specific 

learning rate, this escalates the global learning rate t, which is shared by all parameters. One downside of 

AdaGrad is that, across all previous iterations, it accumulates gradients, the amount of which tends to rise during 

preparation. This shrinks the learning rate on each parameter (along with weight decay) until each is 

infinitesimally tiny, reducing the amount of effective training iterations. AdaDelta [8] is a method which builds 

on AdaGrad and attempts to address some of the drawbacks described above. Using an exponentially decaying 

average of the squared gradients, AdaDelta accumulates the gradients in previous time measures. This keeps the 

denominator from being infinitesimally tiny and means that, even after a significant number of iterations, the 

parameters continue to be modified. It also substitutes an exponentially decaying sum of the squares of the 

parameter changes x over the previous iterations for the global learning rate t. When used to train deep 

networks, this approach has been shown to do reasonably well, and is far less susceptible to hyper-parameter 

selection. However, in terms of accuracy [8], it does not do as well as other approaches such as SGD and 

AdaGrad. 

 

III. OUR APPROACH  

 

"Shallow network layers appear to have much narrower gradients than deep layers owing to the "vanishing 

gradients" effect, often varying in order of magnitude from one layer to the next [10]. Methods either retain a 

global learning rate that is replicated across all parameters or use an adaptive learning rate unique to each 

parameter in most prior work in optimization for deep networks. The following observation is exploited by our 

method: parameters in the same layer have gradients of identical magnitudes and may thus effectively share a 

shared learning rate. It is possible to use layer-specific learning speeds to accelerate layers with lower gradients. 

Another value of this strategy is that our system stays computationally effective by preventing the calculation of 

huge numbers of parameter-specific learning speeds. Finally, as described in Section I, we also want our 

technique to take big steps at low curvature points in order to prevent slowing down learning at high-error low 

curvature saddle points. For any regular optimization process, let t (k) is the learning rate at the k-the iteration. 

This would be given by equation 4 in the case of SGD, while for AdaGrad it would only be the global learning 

rate t, as in equation 8. We suggest that t (k) be changed as follows: 

 

 
Here, t (k) l denotes the new learning rate for the parameters at the k-the iteration in the l-the layer and g (k) l 

denotes the vector of the parameter gradients at the k-the iteration in the l-the layer. Thus, we see that to 

calculate the learning rate for that line, we use only the gradients in the same layer. It is also necessary to 

remember that, from previous versions; we do not use any gradients and therefore save on storage. We see from 

equation 9 that the equation essentially reduces to using the usual learning rate t (k) when the gradients in a 

layer are very high. However, we are more inclined to be at a low curvature point where the gradients are very 

small. Thus, the equation raises the learning rate to ensure that the network's initial layers learn quicker and that 

we easily avoid high-error low-curvature saddle points. On top of SGD, we can use this layer-specific learning 

pace. The change in that case, using equation 3, will be: 

 

 
Where (k) l denotes the change at the k-the iteration in the l-the layer parameters. Similarly, to use our updated 

learning speeds, we should change AdaGrad's upgrade equation (8). 
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Notice that we use a separate learning rate for each layer, which is shared by all weights in that layer, unlike 

AdaGrad, which uses a distinct learning rate for each parameter. In addition, AdaGrad modifies the learning rate 

based on the entire background of gradients observed for that weight, whereas we change the learning rate of a 

layer based only on gradients observed in the current iteration for all weights in a given layer. Thus, our method 

prohibits both the accumulation of gradient knowledge from previous iterations and the calculation of learning 

rates for each parameter; relative to AdaGrad, it is therefore less computational and memory intensive. On large-

scale datasets such as Image Net (when extended over SGD), where AdaGrad struggles to converge to a 

successful solution, the suggested layer unique learning rates still perform well. Any current optimization 

methodology that uses a global learning rate has a layer-specific learning rate, and easily escapes saddle points, 

both without losing computing or memory usage, can be used for the proposed process. Using our adaptive 

learning rates on top of established optimization strategies almost always boosts efficiency on regular datasets, 

as we illustrate in Section IV. For any current optimization strategy that uses a global learning rate, the 

suggested approach may be used. This allows reaching a layer-specific learning pace and, with relatively little 

computing overhead, helps to prevent saddle points sooner. Using our adaptive learning rates on top of 

established optimization strategies almost always boosts efficiency on regular datasets, as we illustrate in 

Section IV. 

 

IV. EXPERIMENTAL RESULTS  

A. Dataset 

On three regular datasets, we present picture classification results: MNIST, CIFAR10 and Image Net (ILSVRC 

2012 dataset, part of the Image Net challenge). MNIST provides 60,000 digital handwritten images for 

preparation and 10,000 digital handwritten images for research. In each class, CIFAR10 consists of 10 groups of 

6,000 pictures. 1.2 million Colour photographs from 1000 separate groups are used in Image Net. B. 

Experimental Information to enforce our process, we use Cafe [16]. Stochastic Gradient Descent (SGD), 

Nester’s Accelerated Gradient (NAG) and AdaGrad are optimization methods given by Cafe. We apply our 

adaptive layer-specific learning rate approach on top of both of these optimization methods for a fair contrast 

between state-of-the-art methods. The efficacy of our algorithm on convolutionary neural networks on 3 datasets 

is seen in our experiments. On CIFAR10, as provided in Cafe, we use the same global learning rate. Although 

our approach often rises the layer-specific learning rate on the basis of the global learning rate (with regard to 

other optimization methods), we begin with a slightly lower learning rate of 0.006 to render the Image Net 

experiment less aggressive for learning. With the learning rate used in [2] for studies performed on Image Net, 

SGD was initialized. 1) MNIST: For our trials on MNIST, we use the same architecture as Lent. On top of 

stochastic gradient descent, Nester’s accelerated gradient approach and Adored on the MNIST dataset; we 

present the effects of the usage of our suggested layer-specific learning speeds. Since all approaches agree on 

this dataset very easily, we just present the precision and loss for the first 2,000 iterations. Table I am presenting 

the  

TABLE me: The mean error rate on MNIST as seen in the table after multiple iterations for stochastic gradient 

descent, the accelerated gradient of Nester and Adored with their layer-specific adaptive models. Each 

procedure has been executed 10 times, and its mean and standard deviation have been recorded. 

 

 
Fig. Fig. 1: CIFAR data set: accuracy-showing plots (Figures 1a-1c) contrasting SGD, NAG and AdaGrad, each with our layer-wise 

adaptive learning speeds. We display results for the SGD plot both when we move down the learning rate at 50,000 iterations and at 

60,000 iterations. 

When each procedure was run 10 times, the mean precision and standard deviation. We notice that our layer-

specific learning rate proposed is consistently higher than the accelerated gradient, stochastic gradient descent 

and AdaGrad of Nesterov. Including stochastic gradient descent, Nesterov's accelerated gradient and AdaGrad, 

the suggested approach also achieves the highest precision of 99.2 percent in all the experiments. 

2) CIFAR10: 



ISSN NO: 9726-001X  

Volume 08 Issue 01 March 2020 

 
We use a convolutionary neural network on CIFAR10 with 2 layers of 32 characteristic maps from 5 to 5 

convolution kernels, each accompanied by 3 to 3 total pooling layers. After that, we have another convolution 

sheet, accompanied by a 3 ⁇ 3 max pooling layers, with 64 functions maps from a 5 ⁇ 5 convolution kernels. 

Finally, with 10 secret nodes and a soft-max logistic regression layer, we have a totally linked layer. A ReLu 

non-linearity is introduced after each convolution sheet. This architecture is the same as that defined by Cafe. 

The learning performance for the first 60,000 iterations was 0.001 and at 60,000 and 65,000 iterations it was 

reduced by a factor of 10. On this dataset, we find again that our method's final error and failure is consistently 

lower than SGD, NAG and AdaGrad (Table II). Our adaptive strategy achieves a lower precision after phase 

down than both SGD and NAG. Notice that we can get an increase of 0.32 percent over the mean accuracy for 

SGD just using our optimization approach (without modifying the network architecture). We achieve an 

accuracy of 82.08 percent, which is higher than SGD after 70,000 iterations, even though we decrease the 

learning rate at 50,000 iterations (taking 60000 iterations in total), greatly decreasing the needed training period 

Fig. 1. Because our approach converges even quicker when used with SGD, the phase down on the learning rate 

may be done much sooner, theoretically further minimizing training time. While Adagrad does not do very well 

with default parameters on CIFAR10, a 1.3 percent increase over the average final accuracy is observed, with a 

substantial speed-up in training period again. 

3) Image Net:  

To equate our approach with other optimization algorithms, we use an implementation of Alex Net [2] in Cafe, 

deep convolutional neural network architecture. AlexNet consists of 5 layers of convolution, accompanied by 3 

layers that are entirely linked. See the paper [2] for more information about the architecture. Because Alex Net 

is a deep neural network with considerable difficulty, it is necessary to extend our approach to this design of the 

network. The outcomes by using our approach over SGD are seen in Fig 2. We remember that after 100,000 and 

200,000 iterations, our system obtains substantially greater precision and lower loss. In comparison, on the 

validation set after 295,000 iterations, which SGD completes only after 345,000 iterations, we are still able to 

meet the maximum precision of 57.5 percent, resulting in a 15 percent reduction in training period. This is a 

substantial reduction, considering that such a large model requires more than a week to train properly. Across all 

iterations, our loss is still consistently smaller than SGD. We execute a step-down by a factor of 10 for every 

100,000 iterations in the current model. Until performing a phase down, we adjust the amount of training 

iterations at a given learning pace in order to evaluate how our strategy works as we reduce the number of 

training iterations. After 350,000 iterations of SGD and our operation, Table III demonstrates the final accuracy. 

But as we reduce the amount of iterations after which we conduct the phase down in the learning pace, the final 

accuracy decreases marginally, it is apparent that our approach achieves better accuracy than SGD. Notice that 

we report accuracy to the top-1 class. Our findings are marginally lower than those stated in [2], because we use 

the Cafe implementation of the Alex Net framework and do not use any data augmentation techniques. 

 

IV. CONCLUSIONS 

A general technique for training deep neural networks utilizing layer-specific adaptive learning rates is proposed 

in this article. 
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TABLE II: Mean accuracy on CIFAR10 as seen in the table after multiple iterations for SGD, NAG and 

AdaGrad with layer-specific adaptive models. There is a report of the mean and standard deviation over 5 runs.

 
Fig. Fig. 2: Data collection on Image Net: plot relating stochastic gradient descent to our layer-wise adaptive learning speeds. 

Throughout all iterations, we can see a clear increase in precision and loss over the standard SGD process. 

 
TABLE III: Contrast of stochastic gradient descent and our step-down approach at various iterations on Image 

Net, which can be used with a global learning rate on top of any optimization method. 

 

To calculate an adaptive learning rate for each layer, the system uses gradients from each layer. When the 

parameters are in a low curvature saddle point area, it aims to speed up convergence. Layer-specific learning 

rates often enable the system to avoid slow learning, typically induced by very small gradient values, in the 

initial layers of the deep network. 
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